Design and evaluation of a shape memory alloy-based tendon- driven actuation system for biomimetic artificial fingers

نویسنده

  • Vishalini Bundhoo
چکیده

This thesis presents the preliminary work in the development of a biomimetic actuation mechanism for prosthetic and wearable robotic hand applications. This work investigates the use of novel artificial muscle technology, namely, shape memory alloys. The mechanism developed is based on the combination of compliant tendon cables and one-way shape memory alloy wires that form a set of agonist–antagonist artificial muscle pairs for the required flexion/extension or abduction/adduction of the finger joints. For the purpose of this thesis, an anthropomorphic four degree of freedom artificial testbed was developed with the same kinematic properties as the human finger. Hence, the size, appearance and kinematic architecture of the index finger were efficiently and practically mimicked. The biomimetic actuation scheme was implemented on the anthropomorphic artificial finger and tested, in an ad-hoc fashion, with a simple microcontroller-based pulse width modulated proportional derivation (PWD-PD) feedback controller. The tests were done to experimentally validate the performance of the actuation mechanism as emulating the natural finger’s joints movement. This thesis details the work done for the finger design process as well as the mechanisms and material used to achieve the actuation and control objectives. The results of the experiments done with the actuation platform are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part I: design and evaluation

In this paper, a new biomimetic tendon-driven actuation system for prosthetic and wearable robotic hand applications is presented. It is based on the combination of compliant tendon cables and one-way shape memory alloy (SMA) wires that form a set of agonist–antagonist artificial muscle pairs for the required flexion/extension or abduction/adduction of the finger joints. The performance of the ...

متن کامل

Fuzzy Control for Shape Memory Alloy Tendon Actuated Robotic Structure

Shape memory alloy offer an interesting solution, using the shape transformation of the wire/structure in the moment of applying a thermal type transformation able to offer the martensitic temperature. In order to assure an efficient control of SMA actuator applied to inverted pendulum, a mathematical model and numerical simulation of the resulting model is required. Due a particular possibilit...

متن کامل

Design, Fabrication and Intelligent Control of the Gripper Based on SMA Actuators

This paper presents the designing, simulation, fabrication and control of a gripper actuated by Shape Memory Alloy (SMA) wire. The presented gripper has the advantage of the small linear displacement of the slider connected to the SMA wire, and can convert the linear displacement into angular movement of the gripper fingers. In this study, design and simulation processes have been done by two p...

متن کامل

Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator

In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system ...

متن کامل

Design and Analysis of a Novel Tendon-less Backbone Robot

A new type of backbone robot is presented in this paper. The core idea is to use a cross shape mechanism with the principle of functioning of the scissors linkages, known as a pantograph. Although this continuum arm acts quite similar to tendon-driven robot, this manipulator does not include any tendon in its structure. This design does not suffer from the weaknesses of the continuum design suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009